2005 Vol. 7, No. 25 5741-5742

Reduction of 2,3-Dihydroisoxazoles to β -Amino Ketones and β -Amino Alcohols

Patrick Aschwanden, Lisbet Kværnø, Roger W. Geisser, Florian Kleinbeck, and Erick M. Carreira*

Laboratorium für Organische Chemie, ETH Hönggerberg, CH-8093 Zürich, Switzerland carreira@org.chem.ethz.ch

Received October 20, 2005

ABSTRACT

Bn NH OH 1) NaBH₄, AcOH
$$R^1$$
 Ph 2) zinc powder, AcOH R^2 Ph R^2 AcOH/H₂O = 3:1 R^2 R^2 R^2 R^2 Ph R^2 R^2

We report the reduction of 2,3-dihydroisoxazoles to β -amino ketones and β -amino alcohols. The latter are obtained in high diastereoselectivity with preference for the syn isomer.

We have recently developed a novel cyclization reaction of propargyl N-hydroxylamines 1 to 2,3-dihydroisoxazoles under mild conditions in the presence of catalytic amounts of ZnI_2 and DMAP. 2 This approach complemented extant methods, providing regioselective access to 3,5-disubstituted 2,3-dihydroisoxazoles. The reductive opening of these can provide access to versatile building blocks for the preparation of pharmaceuticals and natural products. 3 In this paper, we describe our investigations concerning the conversion of these heterocycles into β -amino ketones 4 and β -amino alcohols. 5,6

The most common methods for the reductive ring opening of dihydroisoxazoles include LiAlH₄ and catalytic hydrogenation with Raney nickel.⁷ Our initial screening with these

methods proved unsuccessful in providing the desired β -amino ketones or β -amino alcohols, leading us to investigate zinc in acetic acid as an alternative. In preliminary experiments, test substrate 5 (Table 1) was subjected to a

Table 1. Dihydroisoxazole Reduction to β -Amino Ketones

isoxazoline	\mathbb{R}^1	\mathbb{R}^2	eta-amino ketone	yield (%) (range for three runs)
1	Me	nBu	9	74-81
2	Me	$t \mathrm{Bu}$	10	77 - 82
3	iPr	nBu	11	86 - 91
4	iPr	tBu	12	88-90
5	$t \mathrm{Bu}$	nBu	13	91 - 96
6	$t \mathrm{Bu}$	tBu	14	88 - 92
7	Ph	nBu	15	59 - 73
8	Ph	$t \mathrm{Bu}$	16	65 - 78

suspension of Zn powder (5 equiv) in glacial acetic acid. The formation of β -amino ketone **13** and the corresponding α,β -unsaturated ketone was observed within less than 1 h. Optimal conditions were found to be the use of an excess

⁽¹⁾ Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999, 121, 11245.

⁽²⁾ Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.

^{(3) (}a) Kleemann. A.; Lindner, E.; Engel, J. In *Arzneimittel*; VCH: Weinheim 1987. (b) Traxler, P.; Trinks, U.; Buchdunger, E.; Mett, H.; Meyer, T.; Müller, M.; Regenass, U.; Rösel, J.; Lydon, N. *J. Med. Chem.* **1995**, *38*, 2441. (c) Dimmock, J. R.; Siduh, K. K.; Chen, M.; Reid, R. S.; Allen, T. M.; Kao, G. Y.; Truitt, G. A. *Eur. J. Med. Chem.* **1993**, *28*, 313.

⁽⁴⁾ For general methods to prepare β-amino ketones, see: (a) Davies, S. G.; McCarthy, T. D. Synlett 1995, 700. (b) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 1313. (c) Kantam, M. L.; Neeraja, V.; Kavita, B.; Neelima, B.; Hussain, S. Adv. Synth. Catal. 2005, 347, 763. (d) Dondoni, A.; Marra, A.; Boscarato, A. Chem.-Eur. J. 1999, 5, 3562. (e) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.(b) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1045. (f) Hart, D. J.; Ha, D. C. Chem. Rev. 1989, 89, 1447

(10 equiv) of activated zinc powder added in two portions to a solution of substrate in 3:1 AcOH/H₂O. Thus, the desired β -amino ketone **5** was obtained, with only trace amounts of the undesired α , β -unsaturated ketone being observed.

We next examined the substrate scope of the reaction with a number of substituted 2,3-dihydroisoxazoles (Table 1). In general, good to excellent yields were obtained. With C3-aryl-substituted substrates (7 and 8), the competing elimination to the α,β -unsaturated ketone led to slightly diminished yields.

When C5-aryl-substituted 2,3-dihydroisoxazoles ($R^2 = Ph$) were subjected to zinc powder in acetic acid, instead of the expected β -amino ketones, the corresponding *anti-\beta*-amino alcohols were obtained in moderate to good diastereoselectivities (Scheme 1). However, this observation did not prove

Scheme 1. Reduction to β -Amino Alcohols

Bn NH OH zinc powder
Ph AcOH

10 NaBH4
AcOH
20 zinc powder
AcOH

17 rac-19

dr = 85:15
68% major isomer

to be general with respect to substrate scope. In subsequent investigations of various reducing conditions, we observed that reduction with sodium borohydride in acetic acid followed by NO-bond cleavage with zinc in acetic acid provided the corresponding $syn-\beta$ -amino alcohols as confirmed by NOE measurements. This observation proved to be general.

To examine the scope of this process, various 2,3-dihydroisoxazoles with R^2 = Ph were subjected to the reaction conditions (NaBH₄/AcOH then Zn/AcOH, Table 2). In the NaBH₄-promoted reduction of the 3-methyl-substituted

Table 2. Preparation of $syn-\beta$ -Amino Alcohols

		18		19
entry	\mathbb{R}^1	yield (%)a	$\mathrm{d}\mathrm{r}^b$	yield (%) (syn)
1	Me	59^c	80:20	96^d
2	$i \mathrm{Pr}$	89	91:9	72
3^e	$i \Pr$			63
4	$\mathbf{C}\mathbf{y}$	85	89:11	79
5	Ph	79	87:13	75

^a Combined yield of *syn*- and *anti*-isoxazolidines **18**. ^b Diastereomeric ratios were determined by ¹H NMR of the crude products. ^c Yield for the *syn*-isoxazolidine **18**. ^d Yield observed using *syn*-isoxazolidine **18** as starting material for the N−O bond cleavage reaction. ^e One-pot procedure.

2,3-dihydroisoxazole **17** ($R^1 = Me$), the resulting intermediate isoxazolidines obtained in 80:20 dr were readily separable by column chromatography affording the pure *syn*-isomer **18** in 59% isolated yield (entry 1). Subsequent reductive NO-bond cleavage with zinc powder in AcOH proceeded with no stereochemical degradation, thus furnishing the diastereomerically pure *syn*- β -amino alcohol **19** ($R_1 = Me$). For the *syn*-selective reductions of the remaining substrates, the inseparable diastereomeric mixtures of isoxazolidines **18** were subjected directly to NO-bond cleavage, affording the readily separable β -amino alcohols **19** (entries 2, 4, and 5). As exemplified by entry 3, it was possible to carry this out as a one-pot process transformation.

In summary, we have shown that 2,3-dihydroisoxazoles can serve as precursors for the preparation of either β -amino ketones or β -amino alcohols depending on their substitution pattern. The desired β -amino ketones can be obtained in preparatively useful yields. Additionally, a borohydride reduction followed by ring opening reaction provided a general entry to syn- β -amino alcohols in high selectivities. These versatile building blocks may find further synthetic applications, in particular when derived from unusually substituted 2,3-dihydroisoxazoles.

Acknowledgment. We thank the Swiss National Science Foundation and F. Hoffmann-LaRoche for generous support. L.K. thanks The Technical University of Denmark for a doctoral fellowship. F.K. thanks the Fonds der Chemischen Industrie for a fellowship.

Supporting Information Available: Experimental procedures and spectral data for all products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052540C

5742 Org. Lett., Vol. 7, No. 25, 2005

⁽⁵⁾ For selected examples to prepare β -amino alcohols, see: (a) Pilli, R. A.; Russowsky, D. *J. Chem. Soc.*, *Chem. Commun.* **1987**, 1053. (b) Pilli, R. A.; Russowsky, D.; Dias, L. C. *J. Chem. Soc.*, *Perkin Trans. I* **1990**, 1213. (c) Barluenga, J.; Aguilar, E.; Fustero, S.; Olano, B.; Viado, A. L. *J. Org. Chem.* **1992**, *57*, 1219. (d) Keck, G. E.; Truong, A. P. *Org. Lett.* **2002**, *4*, 3131

⁽⁶⁾ β -Amino alcohols are also commonly used as chiral ligands; see: (a) *Comprehensive Asymmetric Catalysis I—III*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Heidelberg, 1999. (b) *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000.

^{(7) (}a) For a review, see: Freeman, J. P. Chem. Rev. 1983, 83, 241. (b) Adachi, T.; Harada, K.; Miyazaki, R.; Kano, H. Chem. Pharm. Bull. 1974, 22, 61. (c) Curran, D. P. J. Am. Chem. Soc. 1983, 105, 5826. (d) Curran, D. P.; Scanga, S. A.; Fenk, C. J. J. Org. Chem. 1984, 49, 3474. (e) Muri, D.; Lohse-Fraefel, N.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44, 4036. (f) Bode, J. W.; Fraefel, N.; Muri, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2001, 40, 2082. (g) Bode, J. W.; Carreira, E. M. Org. Lett. 2001, 3, 1587. (h) Bode, J. W.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 3611